5^x-3=16/5^x+3

Simple and best practice solution for 5^x-3=16/5^x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5^x-3=16/5^x+3 equation:



5^x-3=16/5^x+3
We move all terms to the left:
5^x-3-(16/5^x+3)=0
Domain of the equation: 5^x+3)!=0
x∈R
We get rid of parentheses
5^x-16/5^x-3-3=0
We multiply all the terms by the denominator
5^x*5^x-3*5^x-3*5^x-16=0
Wy multiply elements
25x^2-15x-15x-16=0
We add all the numbers together, and all the variables
25x^2-30x-16=0
a = 25; b = -30; c = -16;
Δ = b2-4ac
Δ = -302-4·25·(-16)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2500}=50$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-50}{2*25}=\frac{-20}{50} =-2/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+50}{2*25}=\frac{80}{50} =1+3/5 $

See similar equations:

| 7.4-x=10 | | 14=3x-2(3x+11) | | x/2+3/2=2x-1/2 | | (w+7/w+3)+1=w+5/w-1 | | w+7/w+3+1=w+5/w-1 | | 7×-4y=10 | | C=135.48t^2+13505 | | 11×+4y=-467×-4y=10 | | 1000=1.4x | | 2n=6(n-10) | | 0=-x^2-4x+3 | | -5(x-2)-6=2x+8+x | | 6x+6+3=17 | | -11=5x+10 | | 8x-6x+4-2=6-4 | | 15-2940x^-2=0 | | 0.6x=-16 | | -4x+3(-3x-2)=50 | | X^2–6x=6 | | 3/4(x-4)+3/5(x+5)=x+7 | | -5x-6=2x+15 | | 5x0.1=3x | | 0.3=0.5t-0.7 | | 0.75=0.83.5(0.75)+x(0.25) | | 5y^2-3=118 | | 9(3x-6)=2 | | 5f-7(f+3)=2f+12 | | 30/42/6=45/x/x | | 32/8=x/3 | | 8(x+10)=10-6x | | 3a-7=15a | | 100=8+v |

Equations solver categories